$\delta 6.64(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
Acknowledgment. The authors thank Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and Consiglio Nazionale delle Ricerche (CNR) for financial support. Mrs. B. Innocenti and Dr. C. Faggi are gratefully acknowleged for technical assistance.

Registry No. 1a, 22020-87-7; 1b, 141345-97-3; 1c, 141345-98-4; 3a, 6142-73-0; 3b, 124571-36-4; 3c, 54211-14-2; 4a, 141345-99-5; 4a 4 -spiro regioisomer, 141346-01-2; 4b, 141346-00-1; 4b 4-spiro regioisomer, 141346-02-3; 4c, 141346-03-4; 4d, 141346-04-5; 4d 4-spiro regioisomer, 141346-05-6; 4e (isomer 1), 141346-06-7; 4e (isomer 2), 141434-12-0; 4f, 141346-07-8; 4f 4-spiro regioisomer,

141346-08-9; 4g (isomer 1), 141346-09-0; 4g (isomer 2), 141434-13-1; 4h, 141346-10-3; 5a, 141346-11-4; 5b, 141346-12-5; 5c, 141346-13-6; 5d, 141346-14-7; 5e, 141346-15-8; 5f, 141346-16-9; trans-5g, 141346-17-0; cis-5g, 141346-18-1; trans-5h, 141346-19-2; cis-5h, 141434-14-2; 7f, 141346-20-5; 7g, 141346-21-6; 7h, 141346-22-7; 8b, 141346-23-8; 8c, 141346-24-9; 8e, 141346-25-0; 8f, 141346-26-1; 8g, 141346-27-2; 8h, 141346-28-3.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for compounds $5 f$, trans-5h, and cis-5h (6 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Asymmetric Synthesis. 26. ${ }^{1}$ An Expeditious Enantioselective Synthesis of the Defense Alkaloids (-)-Euphococcinine and (-)-Adaline via the $\boldsymbol{C N}(\boldsymbol{R}, S$) Method

Chongwei Yue, Jacques Royer,* and Henri-Philippe Husson
Institut de Chimie des Substances Naturelles du C.N.R.S., 91198 Gif-sur-Yvette Cedex, France

Received January 22, 1992

Abstract

The unnatural enantiomer (-)-euphococcinine (2) and the natural enantiomer of (-)-adaline (3), two homotropane alkaloids, were each prepared in three steps from chiral (-)-2-cyano-6-oxazolopiperidine synthon 8 by the $C N(R, S)$ method. The key steps of these syntheses are the formation of a chiral quaternary center α to the piperidine nitrogen with complete stereocontrol and a subsequent intramolecular Mannich reaction. The previously unknown absolute configuration of natural (+)-euphococcinine was deduced from the synthesis of its enantiomer (-)-2.

$(+)$-Euphococcinine (2) has been found in both the vegetable and the animal kingdoms. It was first isolated from Euphorbia atoto ${ }^{2}$ and has also been found in the defense secretion of ladybugs Cryptolaenus montrouzieri ${ }^{\text {aa }}$ and Epilachna varivestis. ${ }^{3 b}$ A pentyl analog, (-)-adaline (3), was also isolated from secretion of the ladybugs Cryptolaenus montrouzieri ${ }^{3 \mathrm{aa}}$ and Adalia bipunctata. ${ }^{4}$ These alkaloids were found to exhibit repulsive activity against different insects. The absolute configuration of $(-)$-adaline has been determined to be $1 R, 5 S .{ }^{5}$ It is proposed that the absolute configuration of (+)-euphococcinine is $1 S, 5 R$, ${ }^{6}$ but this has yet to be proved.
In this paper we wish to report a new application of the established $C N(R, S)$ method 7 to the enantioselective synthesis of 2 and $3^{6,8}$ from synthon $8 .{ }^{9}$ As depicted retrosynthetically in Scheme I, the strategy used involved stepwise introduction of an acetone equivalent and an alkyl chain in regio- and stereocontrolled manner. We show here that the Lewis acid TBDMSOTf is a very efficient agent for the selective formation of the appropriate iminium 6
(1) Part 25: Ratovelomanana, V.; Vidal, L.; Royer, J.; Husson, H.-P. Heterocycles 1991, 32, 879.
(2) Hart, N. K.; Johns, S. R.; Lamberton, J. A. Aust. J. Chem. 1967, 20, 561.
(3) (a) Brown, W. V.; Moore, B. P. Aust. J. Chem. 1982, 35, 1255. (b) Eisner, T.; Goetz, M.; Aneshausley, D.; Ferstandig-Arnold, G.; Meinwald, J. Experientia 1986, 42, 204.
(4) Tursch, B.; Braekman, J.-C.; Daloze, D.; Hootele, C.; Losman, D.; Karlsson, R.; Pasteels, J.-M. Tetrahedron Lett. 1973, 201.
(5) Tursch, B.; Chome, C.; Braekman, J.-C.; Daloze, D. Bull. Soc. Chim. Belg. 1973, 82, 699.
(6) Hill, R. K.; Renbaum, L. A. Tetrahedron 1982, 38, 1959.
(7) Referring to the desire to obtain a R or S configuration α to the nitrogen by substitution of the CN group.
(8) For previous racemic syntheses of adaline and euphococcinine see: refs 5 and 6 and: (a) Alder, K.; Betzing, H.; Kuth, R.; Dortman, H. H. Liebigs Ann. Chem. 1959, 620, 73. (b) Gossinger, E.; Witkop, B. Monatsh. Chem. 1980, 111, 803. (c) Gnecco Medina D. H.; Grierson, D. S.; Husson, H.-P. Tetrahedron Lett. 1983, 24, 2099.
(9) Bonin, M.; Grierson, D. S.; Royer, J.; Husson, H.-P. Org. Synth. 1991, 70, 54.
Scheme I

Scheme II

$15 a \quad \mathrm{R}_{2}=\mathrm{CH}_{3}$
15 b $\quad \mathrm{R}_{2}=-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}$

from 7, allowing formation of the quaternary center.

Results

Although several electrophilic equivalents of the acetonyl
moiety have been reported, ${ }^{10}$ we have encountered serious difficulties in acetonylation of synthon 8 . Despite the fact that 8 condenses easily with bromoacetaldehyde ethylene acetal to give 12 (85% yield), ${ }^{11}$ no alkylation product could be detected when α-bromo acetone ketals 9 and 10 were used as electrophiles (Scheme II). The neopentylic character of the electrophilic centers of 9 and 10 is probably the reason for their nonreactivity. ${ }^{12}$

We then turned to other reagents that, after alkylation, could afford a derivative transformable into key intermediate 7 (Scheme I) in a keto-protected form. A series of such reagents ${ }^{10}$ (propene oxide, 1,2-dibromopropene, nitropropene, allylbromide) was tested without success. Yields were poor or zero for either the alkylation step or the subsequent reaction required for generation of the acetonyl function.

Finally, we found that 3-bromo-2-methoxy-1-propene (11), prepared by elimination of methanol from 9 by the method of Jacobson et al., ${ }^{10 \mathrm{~h}}$ condensed with the anion derived from 8 to give 13^{11} in 82% yield (Scheme II). The allylic position of the bromine makes it a better leaving group ($\mathrm{S}_{\mathrm{N}} 2$ or $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction).

The next problem to be tackled was the introduction of the alkyl chain (methyl or pentyl) onto 13 via the iminium ion generated by selective elimination of the nitrile group. The formation of such a quaternary center by reaction with a Grignard reagent is documented. ${ }^{13}$ However, in our case it is possible to generate two different iminium ions. Thus, in addition to the stereochemical problem, a regioselectivity problem arises.

Several attempts to generate the iminium ion from the α-amino nitrile 13 using silver salts ${ }^{11 a, 14}$ led only to complex mixtures. To prevent a possible interaction between the silver salt and the Grignard reagent, ${ }^{15}$ we decided to use trimethylsilyl trifluoromethanesulfonate (TMSOTf) to promote elimination of the nitrile. We anticipated that, despite a possible complexation of the oxazolidine oxygen atom with the Lewis acid, elimination would generate the desired iminium preferentially, since only the cyano group of 13 is antiperiplanar to the nitrogen lone pair.

In order to verify this postulate, the 2-cyano-2-pentyl derivative 14 , having no sensitive functionality other than the α-aminonitrile/oxazolidine system, was prepared by alkylation of 8 with pentyl bromide in 86% yield.
(10) For some representative examples see: (a) Nienhouse, E. J.; Irwing, R. M.; Finni, G. R. J. Am. Chem. Soc. 1967, 89, 4557. (b) Negishi, E.; Luo, F.-T. J. Org. Chem. 1983, 48, 2427. (c) Miller, R. B. Synth. Commun. 1972, 2, 267. (d) Miyano, M.; Dorn, C. R. J. Org. Chem. 1972, 37, 268. (e) Stork, G.; Jung, M. E. J. Am. Chem. Soc. 1974, 96, 3682. (f) Miyashita, M.; Yanami, T.; Yoshikoshi, A. J. Am. Chem. Soc. 1976, 98, 4679. (g) Horning, D. E.; Kavadias, G.; Muchowski, J. M. Can. J. Chem. 1970, 48, 975 . (h) Jacobson, R. M.; Raths, R. A.; McDonald, J. H., III. J. Org. Chem. 1977, 42, 2545. (i) Hosomi, A.; Shirahata, A.; Araki, Y.; Sakurai, H. J. Org. Chem. 1981, 46, 4631. (j) Trost, B. M.; Curran, D. P. J. Am. Chem. Soc. 1980, 102, 5699. (k) Schuda, P. F.; Bernstein, B. Synth. Commun. 1984, 14, 293. (i) Gu, X.-P.; Nishida, N.; Ikeda, I.; Okahara, M. J. Org. Chem. 1987, 52, 3192. (m) Vergne, F.; Aitken, D. A.; Husson, H.-P. J. Chem. Soc. Perkin Trans. 1 1991, 1346.
(11) These compounds have the stereochemistry depicted in Scheme II since the reaction proceeds with retention of configuration see: (a) Guerrier, L.; Royer, J.; Grierson, D. S.; Husson, H.-P. J. Am. Chem. Soc. 1983, 105, 7754. (b) Yue, C.; Royer, J.; Husson, H.-P. J. Org. Chem. 1990, $55,1140$.
(12) The low electrophilicity of bromoketals 9 and 10 has been already reported: (a) Stork, G.; Gardner, J. O.; Boeckman, R. K.; Parker, K. A. J. Am. Chem. Soc. 1973, 95, 2014. (b) Larchevêque, M.; Valette, G.; Cuvigny, T. Tetrahedron 1979, 35, 1745.
(13) (a) Itzhak, Y.; Kalir, A.; Weissman, B. A.; Cohen, S. J. Med. Chem. 1981, 24, 496. (b) Kudzma, L. V.; Spencer, H. K.; Severnack, S. A. Tetrahedron Lett. 1988, $29,6827$.
(14) Overman, L. E.; Okazaki, M. E.; Jacobson, E. J. J. Org. Chem. 1985, 50, 2403.
(15) (a) Tamura, M.; Kochi, J. J. Am. Chem. Soc. 1971, 93, 1483. (b) Whitesides, G. M.; Gutowski, F. D. J. Org. Chem. 1976, 41, 2882.
Scheme III

Scheme IV

17
18

Treatment of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 14 at room temperature with 1 equiv of TMSOTf followed by addition at $-78^{\circ} \mathrm{C}$ of 1 equiv of methyl or pentyl Grignards in ether led to the formation of dialkylpiperidines $15 a$ (61% yield) and 15 b (73% yield), ${ }^{11}$ respectively (Scheme II) with complete regio- and stereochemical control at the newly formed quaternary center.
Coming back to the key intermediate 13 of our synthetic scheme, we assessed the feasibility of the TMSOTf-mediated reaction by NMR. Addition of 1 equiv of TMSOTf in a CDCl_{3} solution of 13 resulted in the disappearance of the CN signal at 118.3 ppm and the appearance of a new resonance signal at 189 ppm due to the iminium carbon. The oxazolidine carbon remained nearly unchanged at 93.5 ppm . This reaction appeared to be reversible because of the formation of TMSCN, which acts as a source of cyanide ion and regenerates the starting material. Nevertheless, no trace of iminium ion formation on the oxazolidine side could be detected.

We were thus confident that 13 could be alkylated in the desired manner. However, treatment of the preformed iminium ion in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with methyl- or pentylmagnesium bromide in ether at $-78^{\circ} \mathrm{C}$ gave only a low yield of alkylated material plus recovered starting material. Higher reaction temperatures and longer reaction times did not increase the yield of alkylated material. This result
is probably due to competition between the Grignard reagent and TMSCN initially formed. To suppress this side reaction, we replaced TMSOTf with the more hindered TBDMSOTf.

Thus, sequential treatment of 13 with TBDMSOTf and methylmagnesium iodide afforded compounds $17 a$ and $18 a^{16}$ (Scheme III) in acceptable overall yields (50% and 30%, respectively). It is clear that these two structures cannot be formed directly from 13. Indeed, examination of the crude reaction mixture by ${ }^{13} \mathrm{C}$ NMR showed the intermediate formation of 16 a , which rapidly rearranged upon contact with silica gel by opening of the oxazolidine ring. Cyclic ketal 17a could arise from a Mannich reaction of iminium 19 followed by trapping of the intermediate oxonium 20 (Scheme IV). Formation of new oxazolidine 18a may result from trapping of iminium ion 21 , which arises from 19 either through an aza-Cope rearrangement ${ }^{17}$ or through stepwise Mannich-retro-Mannich reactions (Scheme IV). Compound 18a could be transformed smoothly into 17 a by a Mannich reaction with a catalytic amount of camphorsulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. Since both $16 a$ and $18 a$ could be converted into 17a, the crude reaction mixture of 13 with methyl Grignard was treated with PPTS to afford 17a directly in 70% yield.
The final steps, consisting of hydrolysis of the ketal function and hydrogenolysis of the chiral appendage, were achieved in a one-pot reaction ($\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, dilute HCl in MeOH) to give (-)-euphococcinine $\left([\alpha]_{\mathrm{D}}{ }^{20}-6.5^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right.\right.$, c 1.8) (lit. ${ }^{2}[\alpha]_{\mathrm{D}}+6^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right.$, c 2.0$)$) in 70% chemical yield.
In the synthesis of (-)-adaline, alkylation of 13 with pentylmagnesium bromide afforded a mixture of 17 b and $18 b^{16}$ in 16% and 58% yields, respectively. However, no trace of 16 b was detected. The most intriguing feature was the failure of the attempted Mannich reaction of enol ether 18b to give ketal 17b. The use of PTSA, PPTS, CSA, TMSOTf, or TiCl_{4} afforded only intractable mixtures or unchanged starting material. Treatment of 18 b with aqueous HCl resulted in hydrolysis of the enol ether to give ketone $2 \mathbf{2 b}^{16}$ in 90% yield. Interestingly, under more drastic conditions (concd HCl in MeOH at reflux for 24 h), isoquinuclidine $\mathbf{2 3 b}{ }^{16}$ was formed from $\mathbf{1 8 b}$. This unexpected product shows that it is extremely difficult for 18b to undergo the desired Mannich reaction.
The differences in yields of 17 and 18 for the methyl and pentyl series may be due to the steric factors that probably govern the evolution of intermediate 20. Formation of ketal 17 necessitates proximity of the phenyl group to the R group. In the case where $\mathrm{R}=\mathrm{CH}_{3}$, there is not important steric hindrance that allows a preferential formation of ketal 17a. In contrast, in the case where $R=$ $\mathrm{C}_{5} \mathrm{H}_{11}$, an unfavorable steric interaction between the phenyl group and the pentyl chain prevents ketal formation, and thus opening of the azabicyclic system by a re-tro-Mannich reaction or a Grob fragmentation, ${ }^{18}$ which leads to oxazolidine 18, becomes the main process. The steric explanation could account for the failure to convert 18b into 17b.
(-)-Adaline $3\left([\alpha]_{\mathrm{D}}{ }^{20}-12^{\circ}\left(\mathrm{CHCl}_{3}, c 0.6\right)\left(\right.\right.$ lit. ${ }^{4}[\alpha]_{\mathrm{D}}-13^{\circ}$ $\left(\mathrm{CHCl}_{3}\right)$) was finally obtained from 17 b in 76% yield by the same procedure used for (- -euphococcinine.
According to the $C N(R, S)$ strategy, the absolute configuration of the newly created quaternary center is fixed

[^0]at the alkylation step (13 to 17) and is predicted to be $1 R, 5 S$ for our two levorotatory synthetic alkaloids. This prediction is confirmed by the identity of the specific rotations of our synthetic and natural (-)-adaline. Thus, we can deduce that natural (+)-euphococcinine possesses the $1 S, 5 R$ configuration.

Experimental Section

General. General experimental conditions and spectroscopic instrumentation used have been described. ${ }^{19}$ 3-Bromo-2-methoxy-1-propene (11) was prepared according to the literature procedure. ${ }^{12}$

Hexahydro-5-(2-methoxyprop-2-enyl)-3-phenyl-5H-oxazolo[$3,2-a$]pyridine-5-carbonitrile (13). To a solution of LDA at $-78^{\circ} \mathrm{C}$ [prepared from 1.6 M n -BuLi in hexane ($37.5 \mathrm{~mL}, 60$ mmol) and diisopropylamine ($8.4 \mathrm{~mL}, 60 \mathrm{mmol}$) in THF (20 mL) at $-20^{\circ} \mathrm{C}$] was slowly added a solution of $8(4.56 \mathrm{~g}, 20 \mathrm{mmol})$ in THF (80 mL). After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , 2 -methoxyallyl bromide (11) ($5 \mathrm{~mL}, 28 \mathrm{mmol}$) was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added, and the mixture was warmed to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to dryness in vacuo. The residue was purified by flash chromatography (4:1 heptane- $\mathrm{Et}_{2} \mathrm{O}$, saturated with ammonia) to afford 13 as white crystals ($4.92 \mathrm{~g}, 82 \%$): $\mathrm{mp} 115-117^{\circ} \mathrm{C}$ (from hep-tane- $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]^{20}-202^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.44\right)$; IR (KBr) 2851, 2213, $1656 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 7.20-7.45(\mathrm{~m}, 5 \mathrm{H}), 4.23(\mathrm{t}, J$ $=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (dd, $J=4.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dd}, f=14.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (dd, J $=14.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.5-2.2(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 20.1$, $29.6,34.8,45.6,54.8,62.3,74.8,85.7,92.0,118.3,127.0,128.9,144.1$, 157.8; MS (CI) $m / z 299$ (MH^{+}), 272, 227. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.46; H, 7.43; N, 9.39. Found: C, 72.52; H, 7.52; N, 9.43.

1-Aza-2-phenyl-4-oxa-5-methoxy-7-methyltricyclo[5.4.1 ${ }^{8,11} .0$]dodecane (17a). To a solution of 13 at room temperature ($259 \mathrm{mg}, 0.87 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was added TBDMSOTf ($340 \mu \mathrm{~L}, 1.48 \mathrm{mmol}$). The reaction mixture was stirred for 40 min and then was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was cooled to $-78^{\circ} \mathrm{C}$ while methylmagnesium iodide (1 M solution in ether) was added ($2.2 \mathrm{~mL}, 22 \mathrm{mmol}$). After 2 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to dryness in vacuo. The crude product was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$), PPTS (80 mg) was added, and the mixture was stirred for 10 h at room temperature. The solvent was evaporated, and the residue was purified by flash chromatography ($3: 1$ heptane- $\mathrm{Et}_{2} \mathrm{O}$) to afford $17 \mathrm{a}(175 \mathrm{mg}, 70 \%)$ as a waxy solid: $\mathrm{mp} 96-98{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $[\alpha]^{20} \mathrm{D}$ $+68^{\circ}\left(\mathrm{CHCl}_{3}, c 0.87\right)$; IR (KBr) $2930,1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 7.1-7.5(\mathrm{~m}, 5 \mathrm{H}), 4.58(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ ($\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$) , 4.00 ($\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.44(\mathrm{~m}$, $1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 1.25-2.40(\mathrm{~m}, 10 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta 16.0,31.8,33.4,38.9,40.6,43.7,48.4,53.3,57.1,64.9$, $67.9,101.4,126.2,126.3,128.0,143.8 ;$ MS (EI) $m / z 287$ ($\mathrm{M}^{+}, 34$), 286 (72), 256 (28), 242 (100), 226 (36), 168 (41). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}: \mathrm{C}, 75.23 ; \mathrm{H}, 8.77 ; \mathrm{N}, 4.87$. Found: C, 74.99; H, 8.63; N, 5.10.
Hexahydro-5-(2-methoxyprop-2-enyl)-8a-methyl-3-phenyl-5H-oxazolo[$3,2-a$]pyridine (18a). The procedure was the same as that described for 17a except that the crude alkylation product (before treatment with PPTS) was directly purified by flash chromatography ($3: 1$ heptane- $\mathrm{Et}_{2} \mathrm{O}$) to afford 17 a (50%) and 18a (32%) as colorless oils. 18a: IR (neat) $2869,1656 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 7.1-7.4(\mathrm{~m}, 5 \mathrm{H}), 4.28(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~d}$, $J=1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.42 (s, 3 H), 3.25 (m, 1 H), 1.95 (dd, $J=14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.6 (s, 3 H), 1.2-1.8 (m, 7 H): ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 21.7,22.8,24.3$, $30.1,42.0,54.1,54.6,59.9,72.8,82.0,96.0,126.9,127.1,128.3,146.3$, 162.0; MS (EI) m/z 287 (${ }^{\bullet}+0.5$), 272 (9), 217 (15), 216 (100);
(19) Aitken, D. J.; Royer, J.; Husson, H.-P. J. Org. Chem. 1990, 55, 2814.

HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}$ 287.1885, found 287.1874.
1-Aza-2-phenyl-4-oxa-5-methoxy-7-pentyltricyclo[5.4.1 ${ }^{\text {b,1 }} .0$]dodecane (17b) and Hexahydro-5-(2-methoxy-prop-2-enyl)-8a-pentyl-3-phenyl-5H-oxazolo[3,2-a]pyridine (18 b). To a solution of $13(1.02 \mathrm{~g}, 3.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature was added TBDMSOTf ($1.1 \mathrm{~mL}, 4.79 \mathrm{mmol}$) was added. After being stirred for 40 min , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. Pentylmagnesium bromide ($2.6 \mathrm{~mL}, 5.2 \mathrm{mmol}$) was then added. After 1.5 h at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched at $-78^{\circ} \mathrm{C}$ by addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 40 \mathrm{~mL}$). The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by careful flash chromatography ($5: 1$ heptane- $\mathrm{Et}_{2} \mathrm{O}$) to yield 17 b ($188 \mathrm{mg}, 16 \%$) and 18 b (670 mg , 58%) as white solids and 13 ($40 \mathrm{mg}, 3.4 \%$).

17b: mp $57-59^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]^{20}{ }_{\mathrm{D}}+69.4^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.52\right.$); IR (KBr) $2864 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 7.1-7.4(\mathrm{~m}, 5 \mathrm{H}), 4.55$ (dd, $J=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}$), 4.0 (dd, J $=11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 0.85-2.30(\mathrm{~m}$, 18 H), $0.7\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 14.0,15.7,22.5$, $23.4,32.4,33.5,39.1,39.2,39.3,42.7,48.3,56.5,57.6,64.5,68.0$, 101.1, 126.2, 127.8, 143.6; MS (EI) m/z 344 (55), 312 (48), 298 (100), 282 (68), 242 (35), 224 (42); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{2} 343.2512$, found 343.2521 .

18b: mp $35^{\circ} \mathrm{C}$ (ether); $[\alpha]^{20}{ }_{\mathrm{D}}-76^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.5\right.$); IR (neat) $2864,1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 7.2-7.5(\mathrm{~m}, 5 \mathrm{H}), 4.3(\mathrm{~m}$, $2 \mathrm{H}), 3.73$ (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.4(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~m}$, $1 \mathrm{H}), 1.9(\mathrm{dd}, J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.4-2.0(\mathrm{~m}, 15 \mathrm{H}), 0.95(\mathrm{t}$, $J=6 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 14.2,21.3,22.6,22.9,23.1$, $29.0,32.5,36.1,42.1,53.9,54.6,60.0,73.3,82.0,97.7,127.2,128.4$, 146.3, 162.1; MS (EI) $\mathrm{m} / \mathrm{z} 344$ (MH ${ }^{+}$, 69), 328 (19), 273 (28), 272 (100), 258 (9), 224 (12). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{2}$: C, 76.92; H, 9.68; N, 4.08. Found: C, 76.65; H, 9.88; N, 4.02.
(-)-Euphococcinine (2). To a solution of 17a ($280 \mathrm{mg}, 0.98$ mmol) in methanol (40 mL) containing 1 mL of concd HCl was added $\mathrm{Pd} / \mathrm{C}(10 \%, 100 \mathrm{mg})$, and the mixture was stirred at room temperature under a H_{2} atmosphere (at ambient pressure). After hydrogen uptake ceased (about 1 h), the reaction mixture was filtered through a celite bed, and the filtrate was concentrated in vacuo. The residue was treated with NaHCO_{3} (saturated solution) and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness. The crude reaction mixture was purified by flash chromatography ($9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$) to give (-)-euphococcinine ($105 \mathrm{mg}, 70 \%$) as a white powder: $\mathrm{mp} 32{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]^{20}-6.5^{\circ}$ ($\mathrm{CH}_{3} \mathrm{OH}, \mathrm{c} 1.80$); IR (KBr) $1702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 3.68$ $(\mathrm{m}, 1 \mathrm{H}), 2.58$ (dd, $J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.4$ (dd, $J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{NH}), 1.4-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.2(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 18.1$ $\left(\mathrm{CH}_{3}\right), 31.2,31.6,38.6\left(\mathrm{C}_{6}\right), 46.2\left(\mathrm{C}_{4}\right), 49.9\left(\mathrm{C}_{5}\right), 52.3\left(\mathrm{C}_{1}\right), 53.3\left(\mathrm{C}_{2}\right)$, $210(\mathrm{C}=0)$; MS (EI) $m / z 153\left(\mathrm{M}^{+}, 50\right), 110(100), 96(86)$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO} 153.1154$, found 153.1152 .

Hexahydro-5-acetonyl-8a-pentyl-3-phenyl-5H-oxazolo-$[3,2-a]$ pyridine (22b). To a solution of $18 \mathrm{~b}(170 \mathrm{mg}, 0.5 \mathrm{mmol})$
in methanol (4 mL) was added a few drops of concd HCl . After being stirred at room temperature for 40 min , the mixture was evaporated to dryness in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with aqueous $\mathrm{NaHCO} \mathrm{O}_{3}$ solution. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. After flash chromatography ($3: 1$ heptane-ethyl acetate) 22 b ($147 \mathrm{mg}, 90 \%$) was obtained as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 7.2-7.4$ (m, $5 \mathrm{H}), 4.3(\mathrm{~m}, 2 \mathrm{H}), 3.6(\mathrm{dd}, J=12.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H})$, $2.34(\mathrm{dd}, J=17.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=7.0$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.5(\mathrm{~s}, 3 \mathrm{H}), 1.2-1.8(\mathrm{~m}, 13 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 14.2,21.2,22.8,23.7,28.7,29.7,32.5$, 35.9, 48.8, 50.3, 59.9, 73.0, 97.5, 127.2, 128.7, 146.0, 206.1; MS (EI) $\mathrm{m} / \mathrm{z} 329\left(\mathrm{M}^{+}, 12\right), 286$ (20), 250 (20), 258 (100), 200 (16), 104 (22); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{31} \mathrm{NO}_{2} 329.2365$, found 329.2370 .

Hexahydro-3-phenyl-8a-pentyl-7-hydroxy-7-methyl-5,8-ethano-5H-oxazolo [2,3-a]pyridine (23b). A solution of 18 b ($278 \mathrm{mg}, 0.81 \mathrm{mmol}$) in methanol (8 mL) and concd $\mathrm{HCl}(0.2 \mathrm{~mL})$ was heated at reflux for 24 h . Methanol was evaporated, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. This solution was washed with aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated. The crude product mixture was applied to a column of flash silica. A first elution ($3: 1$ heptane-ethyl acetate) afforded 22b ($80 \mathrm{mg}, 30 \%$). A second elution ($10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH}$) afforded 23 b ($85 \mathrm{mg}, 32 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (250 MHz) $\delta 7.2-7.4(\mathrm{~m}, 5 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.82 (bs, 1 H), 2.18 (bd, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (t, J $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.2-1.8(\mathrm{~m}, 13 \mathrm{H}), 1.3(\mathrm{~s}, 3 \mathrm{H}), 0.9(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR (50 MHz) $\delta 14.0,16.7,22.7,23.9,24.9,30.1,32.1$, $38.9,39.9,40.0,52.4,65.0,68.8,70.5,102.6,126.6,127.1,128.5$, 142.4; MS (EI) $m / z 330$ (23), 329 (M ${ }^{+}, 17$), 312 (11), 286 (36), 259 (56), 258 (100); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{2} 329.2355$, found 329.2359.
(-)-Adaline (3). The procedure described for (-)-euphococcinine was used to convert 17 b ($540 \mathrm{mg}, 1.57 \mathrm{mmol}$) into (-)-adaline ($250 \mathrm{mg}, 76 \%$), which was obtained as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-12^{\circ}$ ($\mathrm{CHCl}_{3}, \mathrm{c} 0.64$); IR (neat) $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (200 MHz) $\delta 3.65$ ($\mathrm{m}, 1 \mathrm{H}$), 2.52 (dd, $J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{bs}, 1 \mathrm{H}), 1.27-1.75(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}) \delta 14.0\left(\mathrm{CH}_{3}\right), 18.0,22.4,22.7$, $31.8,32.5,36.7,44.0\left(\mathrm{C}_{6}\right), 46.8\left(\mathrm{C}_{4}\right), 49.9\left(\mathrm{C}_{5}\right), 51.8\left(\mathrm{C}_{2}\right), 54.8\left(\mathrm{C}_{1}\right)$, 211.3 (C=O); MS (EI) $m / s 209\left(\mathrm{M}^{+}, 32\right), 180(17), 166$ (100), 152 (88), 110 (42), 96 (58). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 74.59 ; \mathrm{H}$, 11.07; N, 6.69. Found: C, 74.63; H, 11.30; N, 6.66.

Registry No. (-)-2, 84026-78-8; (+)-2, 15486-23-4; 3, 41267-60-1; 8, 88056-92-2; 11, 26562-24-3; 13, 141848-08-0; 17a, 141848-09-1; 17b, 141848-10-4; 18a, 141848-11-5; 18b, 141848-12-6; 22b, 141879-11-0; 23b, 141848-13-7.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 18a, 17b, 22b, and 23b (16 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and may be ordered from the ACS; see any current masthead page for ordering information.

[^0]: (16) The exact stereochemistry of the quaternary carbon (α to nitro gen) of compounds $18,22 \mathrm{~b}$, and 23 b has not been determined. Thus the structures drawn are only visual representations.
 (17) (a) Doedens, R. J.; Meier, G. P.; Overman, L. E. J. Org. Chem. 1988, 53, 685. (b) Overman, L. E.; Robertson, G. M.; Robichaud, A. J. J. Org. Chem. 1989, 54, 1236 and references cited therein.
 (18) Grob, C. A. Angew. Chem., Int. Ed. Engl. 1969, 8, 535.

